1. Kulyk, V., Duriagina, Z., Kostryzhev, A., Vasyliv, B., Vavrukh, V., & Marenych, O. (2022). The effect of yttria content on microstructure, strength, and fracture behavior of yttria-stabilized zirconia. Materials, 15(15), 5212. https://doi.org/10.3390/ma15155212
2. Kulyk, V., Duriagina, Z., Vasyliv, B., Vavrukh, V., Kovbasiuk, T., Lyutyy, P., & Vira, V. (2022). The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia. Materials, 15(8), 2707. https://doi.org/10.3390/ma15082707
3. Kulyk, V. V., Duriagina, Z. A., Vasyliv, B. D., Vavrukh, V. I., Lyutyy, P. Y., Kovbasyuk, T. M., & Holovchuk, M. Y. (2021). Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia. Archives of Materials Science and Engineering, 109(2), 65–79. https://doi.org/10.5604/01.3001.0015.2625
4. Kulyk, V., Izonin, I., Vavrukh, V., Tkachenko, R., Duriagina, Z., Vasyliv, B., & Kováčová, M. (2023). Prediction of hardness, flexural strength, and fracture toughness of ZrO2 based ceramics using ensemble learning algorithms. Acta Metallurgica Slovaca, 29(2), 93-103. https://doi.org/10.36547/ams.29.2.1819
5. Kulyk, V., Vasyliv, B., Duriagina, Z., Lyutyy, P., Vavrukh, V., & Kostryzhev, A. (2024). The effect of sintering temperature on phase-related peculiarities of the microstructure, flexural strength, and fracture toughness of fine-grained ZrO2–Y2O3–Al2O3–CoO–CeO2–Fe2O3 ceramics. Crystals, 14(2), 175. https://doi.org/10.3390/cryst14020175
6. Kulyk, V. V., Duriagina, Z. A., Vasyliv, B. D., Lyutyy, P. Ya., Klimczyk, P., Vavrukh, V. I., Efremenko, V. G., Kostryzhev, A., Trostianchyn, A. M., & Kovbasiuk, T. M. (2024). The effect of sintering modes on the crystal lattice parameters and the morphology of the ZrO₂–nY₂O₃ (n = 3–8 mol%) ceramic microstructure components. Archives of Materials Science and Engineering, 128(1), 5–22. https://doi.org/10.5604/01.3001.0054.8015
7. Vavrukh, V. (2022). Effects of the yttria content and sintering temperature on the phase evolution in yttria-stabilized zirconia. Ukrainian Journal of Mechanical Engineering and Materials Science, 8(1), 12–19. https://doi.org/10.23939/ujmems2022.01.012
8. Vavrukh, V., Klimczyk, P., Priakhin, V., Petryk, V., & Momot, K. (2023). Applicability assessment of the Vickers indentation for determining the fracture toughness of yttria-stabilized zirconia. Ukrainian Journal of Mechanical Engineering and Materials Science, 9(3), 48–59. https://doi.org/10.23939/ujmems2023.03.048
Kulyk, V., Duriagina, Z., Vasyliv, B., Kovbasiuk, T., Lyutyy, P., Vira, V., & Vavrukh, V. (2022). Effect of sintering temperature on crack growth resistance characteristics of yttria-stabilized zirconia. In Proceedings of the International Conference on Oxide Materials for Electronic Engineering (OMEE 2021), Acta Physica Polonica A, 141(4), 323–327. https://doi.org/10.12693/APhysPolA.141.323
10. Kulyk, V. V., Vasyliv, B., Duriagina, Z. A., Vavrukh, V. I., Lyutyy, P. Ya., Kovbasiuk, T. M., Tepla, T. L., & Holovchuk, M. Ya. (2023). Estimation of the role of nanosized stabilizing powders in gaining high-level crack growth resistance of partially stabilized zirconia. In O. Fesenko & L. Yatsenko (Eds.), Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO2021), Springer Proceedings in Physics, Springer, Cham, vol. 279, pp. 311–330. https://doi.org/10.1007/978-3-031-18096-5_18
11. Kulyk, V. V., Duriagina, Z. A., Vasyliv, B. D., Vavrukh, V. I., Kovbasiuk, T. M., Lyutyy, P. Ya., & Vira, V. V. (2023). The effect of rare-earth metal oxide additives on crack growth resistance of fine-grained partially stabilized zirconia. In O. Fesenko & L. Yatsenko (Eds.), Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications (NANO 2022), Springer Proceedings in Physics, Springer, Cham, vol. 297, pp. 263–279. https://doi.org/10.1007/978-3-031-42708-4_17
12. Kulyk, V. V., Duriagina, Z. A., Vasyliv, B. D., Vavrukh, V. I., Lyutyy, P. Y., Kovbasiuk, T. M., Vira, V. V., & Vynar, V. A. (2023). Study of the effects of MgO additive and sintering temperature on mechanical behavior of fine-grained ZrO2–MgO ceramics. In O. Fesenko & L. Yatsenko (Eds.), Nanostructured Surfaces, Nanocomposites and Nanomaterials, and Their Applications (NANO2022), Springer Proceedings in Physics, Springer, Cham, vol. 296, pp. 227–244. https://doi.org/10.1007/978-3-031-42704-6_17
13. Vavrukh, V., Hebda, M., & Lyutyy, P. (2022). Phase balance in yttria-stabilized zirconia depending on the content of the stabilizing additive and sintering temperature. In Proceedings of the 2nd International Conference on Environment, Technology and Management (ICETEM), 13-15 October 2022, Niğde, Turkey,131
14. Vavrukh, V.I., Kulyk, V.V., Duriagina, Z.A., Vasyliv, B.D. (2022) Fracture toughness of zirconia ceramic doped with 3-8 mol% Y2O3. I International Scientific and Practical Conference “Development and design of modern materials and products”, 27-28 October, Dnipro, Ukraine, 11
15. Vavrukh, V. I. (2023). Effect of sintering temperature on the phase composition and properties of zirconia ceramics doped with Y, Co, Ce, Fe oxides. International Conference “Materials Innovations in Surface Engineering” (MISE2023), 29-31 October, University of Queensland, Brisbane, Australia, 25.