Dmytruk A. Mathematical modeling of drying processes in multicomponent capillary-porous bodies considering phase changes

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0825U000723

Applicant for

Specialization

  • 113 - Прикладна математика

21-03-2025

Specialized Academic Board

PhD 7793

Lviv Polytechnic National University

Essay

Dmytruk A . A. Mathematical modeling of drying processes in multicomponent capillary-porous bodies considering phase changes. – Qualification scientific work on the rights of a manuscript. Dissertation for the degree of Doctor of Philosophy in specialty 113 Applied Mathematics (field of knowledge 11 Mathematics and Statistics). – Lviv Polytechnic National University, Lviv, 2024. The dissertation is devoted to the mathematical modeling of the drying processes of multicomponent capillary-porous bodies, taking into account phase changes. Thermodynamically substantiated models of heat and mass transfer and mechanodiffusion have been developed and improved, considering the heterogeneity of particle structures, the influence of phase transitions, and the operating parameters of the drying agent. Analytical and numerical methods have been developed for solving boundary problems of convective drying in a steady-state regime (boundary conditions of the first and third kind) and active hydrodynamic drying in a pulse mode, allowing the determination of temperature, moisture distribution, and stress-strain state of particles at any given moment, depending on their position in the layer and the drying agent parameters. A software package has been developed for numerical analysis of dispersed material drying. The research findings promote sustainability by reducing energy consumption, minimizing environmental impact, and enhancing resource efficiency in industrial drying processes. The results have been implemented in the production of reinforced concrete products and the educational process.

Research papers

Dmytruk A. Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions. Mathematical Modeling and Computing. 2024. Vol. 11, No. 4. P. 978–986.

Gayvas B., Markovych B., Dmytruk A., Havran M., Dmytruk V. The methods of optimization and regulation of the convective drying process of materials in drying installations // Mathematical Modeling and Computing. 2024. Vol. 11, iss. 2. P. 546–554.

Gayvas B., Markovych B., Dmytruk A., Dmytruk V., Kushka B., Senkovych O. Study of contact drying granular materials in fluidized bed dryers // 28th IEEE International seminar/workshop on direct and inverse problems of electromagnetic and acoustic wave theory : рroceedings, Tbilisi, 11-13 September. 2023. Р. 238–241.

Gayvas B. I., Markovych B. M., Dmytruk A. A., Dmytruk V. A., Havran M. Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying // Mathematical Modeling and Computing. 2023. Vol. 10, No. 2. P. 387–399

Gayvas Bogdana, Dmytruk Veronika, Kaminska Oksana, Pastyrska Iryna, Dmytruk Anatolii, Nezgoda Svitlana. Simulation of crack resistance of mustard in pulsed drying mode // Комп’ютерні науки та інформаційні технології : матеріали XV Міжнародна науково-технічна конференція (Збараж, 23–26 вересня, 2020 р.). C. 91–95

Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modeling of drying dispersed materials // Mathematical Modeling and Computing. 2017. Vol. 4, № 2. Р. 139–147

Гайвась Б. І., Дмитрук В. А., Дмитрук А. А. Сушіння зерна в активних гідродинамічних режимах з урахуванням шаруватості його структури // Фізико-математичне моделювання та інформаційні технології. 2016. Вип. 23. С. 29–41

Similar theses